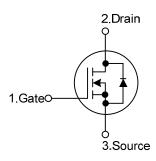
2 Amps,100 Volts N-CHANNEL POWER MOSFET

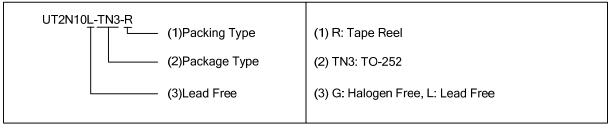
■ DESCRIPTION

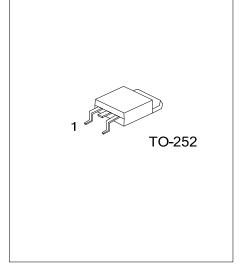

The UTC **UT2N10** is N-Channel enhancement mode silicon gate power FET.it uses a special gate oxide designed to provide full rated conductance at gate biases through 3V ~ 5V and facilitate true on-off power control directly from logic circuit supply voltages.

The UTC **UT2N10** is universally applied in logic level (5V) driving sources, such as automotive switching, solenoid drivers and programmable controllers.

■ FEATURES

- * 2A, 100V
- * $R_{DS(ON)}$ = 1.050 Ω
- * Design Optimized for 5V Gate Drives
- * Can be Driven Directly from QMOS, NMOS, TTL Circuits
- * Compatible with Automotive Drive Requirements
- * SOA is Power Dissipation Limited
- * Nanosecond Switching Speeds
- * Linear Transfer Characteristics
- * High Input Impedance
- * Majority Carrier Device


■ SYMBOL



■ ORDERING INFORMATION

Ordering Number		Dookaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT2N10L-TN3-R	UT2N10G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

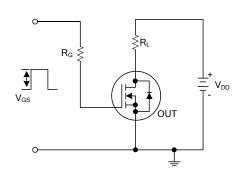
■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

	PARAMETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage (Note 1)		V_{DSS}	100	V	
Gate-Source Voltage		V_{GSS}	±10	V	
Drain-Gate Voltage (R _{GS}	s=1MΩ) (Note 1)	V_{DGR}	100		
Drain Current	Continuous	I _D	2	Α	
	Pulsed (Note 3)	I _{DM}	5	Α	
Power Dissipation		P_{D}	25	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

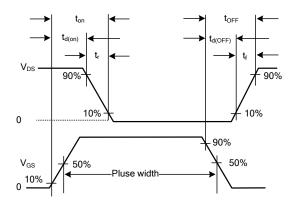
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS					_	_	_
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V 10				V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V			1.0	
			$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}$			25	μΑ
			$V_{GS} = 0V, T_{C} = 125^{\circ}C$			25	
Gate- Source Leakage Current	Forward	- I _{GSS}	V_{GS} =+10V, V_{DS} =0V			+100	nA
	Reverse		V _{GS} =-10V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0		2.0	V
Drain-Source On Voltage (Note 2)		$V_{DS(ON)}$	V _{GS} =5V, I _D =2A			2.1	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =5V, I _D =2A			1.050	Ω
(Note 2)			VGS-5V, ID-ZA			1.050	12
DYNAMIC PARAMETERS				-			
Input Capacitance		C _{ISS}				200	pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz			80	pF
Reverse Transfer Capacitance		C _{RSS}				35	pF
Thermal Resistance Junction to Case		$R_{ heta JC}$				5	°C/W
SWITCHING PARAMETERS							
Turn-ON Delay Time		t _{D(ON)}			10	25	ns
Rise Time		t _R	V_{DD} =50V, I_{D} =2A, R_{G} =6.25 Ω ,		15	45	ns
Turn-OFF Delay Time		t _{D(OFF)}	R_L =25 Ω , V_{GS} =5 V		25	45	ns
Fall-Time		t _F			20	25	ns
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	ISTICS				
Drain-Source Diode Forward Voltage		V _{SD}	I _{SD} =2A			1.4	V
(Note 2)			ISD-ZA			1.4	V
Body Diode Reverse Recovery Time		t _{RR}	I _{SD} =2A, dI _{SD} /dt=50A/μs 100			ns	
N. I. A T. 0500 40500							


Note: 1. $T_J = 25^{\circ}C \sim 125^{\circ}C$.

^{2.} Pulse test: pulse width≤300ms, duty cycle≤2%.


^{3.} Repetitive rating: pulse width limited by maximum junction temperature.

Preliminary

■ TEST CIRCUITS AND WAVEFORMS

Switching Time Test Circuit

Resistive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.